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Abstract. With the coming launch of the Climate Absolute Radiance and Refractivity Earth Observatory (CLARREO) 

Pathfinder (CPF) comes an opportunity to develop a new cloud retrieval from spectral reflectance measurements. With 

continuous coverage across the shortwave spectrum and a factor of 5 to 10 lower radiometric uncertainty than the Moderate 10 

Resolution Imaging Spectroradiometer (MODIS), CPF facilitates the retrieval of a vertical profile of droplet size, providing 

insight into the internal structure of a cloud. Measurements from MODIS coincident with in situ observations provide the 

foundation for developing a constrained optimal estimation technique, ensuring a solution consistent with forward model 

assumptions. The limited unique information in the MODIS bands used in this analysis led to a non-unique solution, with 

many droplet profiles leading to convergence. Droplet size at cloud bottom is difficult to constrain because visible and near-15 

infrared reflectances have an average penetration depth near cloud top. The region of convergence within the solution space 

decreased along the cloud bottom radius dimension by 2 𝜇𝑚 when increasing the number of wavelengths used in the retrieval 

from seven to 35, and by 5 𝜇𝑚 when reducing the measurement uncertainty from 2% to 0.3%. The enhanced accuracy and, to 

a lesser degree, the enhanced spectral sampling provided by CPF measurements are essential to extracting vertically resolved 

droplet size information from moderately thick, warm clouds. 20 

1 Introduction 

Clouds affect Earth’s climate in complex, pivotal ways by modulating incoming and outgoing radiation. They affect weather 

on short time scales and climate on long time scales. In situ cloud measurements provide thermodynamic and microphysical 

information over small spatial scales, but the cost of scaling these observations daily and globally is prohibitive. Remote 

sensing of clouds from space provides the means of acquiring regional to global and seasonal to longer term information on 25 

cloud microphysics and the global distribution and evolution of water in the atmosphere. Monitoring cloud properties from 

space has improved our understanding of the impacts of clouds on Earth’s climate but cloud feedbacks remain a critical 

challenge to predicting future climate states. 
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Passive optical remote sensing of clouds uses measured spectral reflectance of solar radiation to retrieve cloud optical depth 30 

(the number of photon mean free paths over the vertical geometric depth of a cloud layer) and the extinction weighted cloud 

effective droplet radius. These cloud optical properties “…are both a consequence of and an expression for the solar radiative 

transfer characteristics of clouds (Stephens et al., 2019).” Cloud optical depth plays a fundamental role in cloud radiative 

feedbacks (Stephens, 2005), and cloud reflectivity (Bohren and Clothiaux, 2006). The effective droplet radius is linearly related 

to one minus the single scattering albedo, sometimes called the co-albedo, over much of the solar spectrum and can be used to 35 

approximate the fraction of light absorbed by optically thick clouds due to multiple scattering (Twomey and Bohren, 1980). 

From cloud optical depth and effective droplet radius, liquid water path (mass of liquid water in a column of air) and droplet 

number concentration (number of droplets in a unit of volume) can be derived. Liquid water path is related to cloud droplet 

growth processes and the onset of precipitation (Miller et al., 2016), and has been used to used verify the representation of 

clouds in climate models (Stephens et al., 2019). Droplet number concentration is used as a proxy for cloud condensation 40 

nuclei to study the aerosol indirect effect (Feingold et al., 2006).  

 

Scattered solar radiation from clouds has been used to derive effective droplet radius, cloud optical thickness, and cloud phase 

since the 1960s. Sagan and Pollack (1967) used spectrally varying reflectance measurements to study the clouds of Venus. 

Hansen and Pollack (1970) applied the same techniques to terrestrial clouds using measurements taken by a near-infrared 45 

spectrometer on board a high-altitude U-2 plane. Twomey and Seton (1980) expanded on this work by outlining what is now 

considered the standard method for deriving cloud optical properties with spectral measurements in the visible and near-

infrared. Throughout the 1980s and 1990s, several methods of reliably determining droplet size and optical depth (Nakajima 

and King, 1990; Twomey and Cocks, 1982) as well as cloud phase (Pilewskie and Twomey, 1987) from remote measurements 

were developed. Beginning in the early 2000s, the afternoon constellation of satellites, called the A-Train, put decades worth 50 

of research to the test by implementing these retrieval algorithms on a global, daily basis. The Moderate Resolution Imaging 

Spectroradiometers (MODIS) on the Aqua and Terra satellites have measured scattered solar radiation and emitted terrestrial 

radiation in discrete spectral bands for over two decades (Platnick et al., 2003). These measurements were used to derive 

effective cloud droplet radius, cloud optical thickness, cloud phase, liquid water path, and droplet number concentration, for 

which there now exists an extensive data record.  55 

 

The standard method of cloud optical remote sensing can be applied to measured reflectance in as few as two spectral bands, 

one at a wavelength where absorption by water is negligible and the other at a wavelength where water weakly absorbs, defined 

by the product of droplet size and bulk absorption coefficient being much less than unity (Nakajima and King, 1990; Twomey 

and Cocks, 1982). Reflectance in these two spectral regions are nearly independent from one another; at non-absorbing 60 

wavelengths reflectance is proportional to cloud optical thickness, and at wavelengths where liquid water weakly absorbs 

reflectance is proportional to effective droplet radius. This bi-spectral method is employed to compute the MODIS Collection 

6 cloud products by computing extensive lookup tables of cloud reflectance with varying solar and viewing geometry, effective 
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cloud droplet radius, and cloud optical depth (Amarasinghe et al., 2017). Cloud optical depth and effective droplet radius are 

retrieved by calculating the minimum ℓ! -norm, the root-sum-square, of the difference between two MODIS spectral 65 

measurements of reflectance and the lookup table estimates.  

 

While the bi-spectral method is straightforward to implement, it assumes that droplet size within the pixel under observation 

is vertically and horizontally homogenous (Amarasinghe et al., 2017). Theoretical analysis of warm, non-precipitating 

adiabatic clouds predicts a vertical structure of droplet size that increases from cloud base to cloud top (Yau and Rogers, 1996). 70 

Many in situ measurements of warm, non-precipitating clouds have verified this prediction; the opposite behavior has been 

found in precipitating clouds and clouds containing drizzle (King et al., 2013; Miles et al., 2000; Painemal and Zuidema, 2011). 

King et al. (2013) suggested that the assumptions within the MODIS cloud products algorithm for warm, non-precipitating 

clouds may lead to an overestimation of liquid water path by as much as 25%. 

 75 

The bi-spectral retrieval method results in a wavelength-dependent effective radius due to the variability of liquid (and ice) 

water absorption in the near-infrared. This was explained by Platnick (2000) who showed that photons at different wavelengths 

penetrate to different depths within clouds due to the spectral dependence of single scattering albedo. Thus, the retrieved 

droplet radius represents a weighted average over the vertical extent of the cloud, with the largest weighting occurring at cloud 

top (Platnick, 2000). Following this result, Chang and Li (2002) proposed using MODIS measurements at three near-infrared 80 

spectral bands to retrieve the vertical dependence of effective droplet radius. Their method assumed a linear relationship 

between effective droplet radius and cloud depth, and, like MODIS Collection 6, they computed lookup tables of reflectance 

at each wavelength to retrieve a droplet profile. Subsequent analysis by (Chang and Li, 2003) used MODIS measurements to 

solve for the effective droplet radius at cloud top and bottom using a pair of near-infrared wavelengths. Repeating this for a 

different pair of near-infrared wavelengths, the authors retrieved a droplet profile by taking an average of the two linear 85 

retrievals. The authors concluded that creating lookup tables for more than two wavelengths and at least six free variables was 

too memory-intensive for practical use with real data (Chang and Li, 2003). Using the method outlined by Chang and Li 

(2003), Chen et al. (2007) suggested the vertical structure of droplet size can be used to discern between clouds with and 

without precipitation-sized droplets. 

 90 

Kokhanovsky and Rozanov (2012) defined the mathematical framework for applying an optimal estimation technique to infer 

a vertical droplet profile using spectral measurements. They showed that four MODIS wavelengths could be used 

simultaneously with less computational cost than the lookup table method to solve for three variables: the effective radii at 

cloud top and cloud bottom and cloud optical depth. The authors demonstrated their method with synthetic and real MODIS 

measurements. Coddington et al. (2012) computed the gain of Shannon information content with respect to the retrieval of 95 

effective droplet radius and cloud optical depth using hundreds of measurements across the solar spectrum. The authors found 

that beyond the traditional method of using two wavelengths, there is additional information within 100 spectral measurements 
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that can meaningfully alter the retrieval of droplet size and optical depth. King and Vaughan (2012) applied an optimal 

estimation technique to hundreds of synthetic spectral measurements throughout the visible and near-infrared. The use of 

synthetic data enabled a systematic study of the impact of measurement uncertainty on the retrieval uncertainty of cloud optical 100 

depth and the effective radii at cloud top and cloud bottom. King and Vaughan (2012) concluded that a measurement 

uncertainty of 1% would result in a retrieval uncertainty of less than 2 𝜇𝑚 for the effective radius at cloud bottom and less 

than 0.1 𝜇𝑚 at cloud top. It’s important to note that this result depends on cloud optical depth (King and Vaughan, 2012). For 

the retrieved radius at cloud bottom, the authors found the minimum retrieval uncertainty for an optical depth of 10 (King and 

Vaughan, 2012). 105 

 

The Climate Absolute Radiance and Refractivity Earth Observatory (CLARREO) Pathfinder (CPF) is an upcoming space-

borne hyperspectral imaging spectrometer that will make measurements of scattered radiation contiguously between 350 to 

2300 𝑛𝑚 with a radiometric uncertainty of 0.3% (Shea et al., 2020). We have developed new methods that utilize the enhanced 

radiometric accuracy and spectral sampling of CPF to retrieve vertical profiles of cloud droplet size. The research herein builds 110 

upon previous studies in several ways. First, we suggest a different form of the optimal estimation technique that constrains 

the set of possible solutions by maintaining a retrieved droplet profile consistent with the forward model assumptions. Second, 

we apply this constrained optimal estimation method to MODIS data coincident in time and space with in situ measurements 

from the Variability of the American Monsoon Systems Ocean-Cloud-Atmosphere-Land Study Regional Experiment 

(VOCALS-REx) field campaign to provide a means of validation (Wood et al., 2011). For decades, researchers have 115 

investigated the inherent challenges with comparing in situ measurements and remote retrievals (Feingold et al., 2006; 

Nakajima et al., 1991; Painemal and Zuidema, 2011; Platnick and Valero, 1995; Stephens and Tsay, 1990; Twomey and Cocks, 

1982). We discuss how comparisons between in situ and remote measurements provide support for algorithmic development, 

but differences in sampling volumes reveal substantial limitations. Lastly, we demonstrate how improved radiometric accuracy 

and, to a lesser degree, an increase in the number of spectral measurements used in the constrained retrieval decreases the set 120 

of acceptable solutions. For this analysis, we simulated top-of-atmosphere reflectance spectra sampled by the Earth surface 

Mineral dust source InvesTigation (EMIT) imaging spectrometer (Green et al., 2020). With 285 contiguous spectral channels 

from 380 to 2500 𝑛𝑚, the EMIT instrument acts as a surrogate for the upcoming CPF instrument (Thompson et al., 2024). 

 

Section 2 provides an overview of passive optical remote sensing of clouds from space, reviews current methods of deriving 125 

cloud optical properties from satellite measurements, and introduces the constrained optimal estimation method used in this 

analysis. Section 3 describes the data and forward model assumptions. Section 4 presents results with comparisons between 

the retrieved vertical profiles and the in situ data and highlights the dependence on radiometric accuracy. Section 4 also 

discusses challenges comparing in situ and remote measurements and the effects of increasing the number of wavelengths used 

in the retrieval. Section 5 provides an interpretation of the results and discusses potential future work to improve the methods. 130 
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2 Passive Optical Remote Sensing of Clouds 

 

2.1 The Standard Method 

 135 

Deriving cloud optical properties from spectral reflectance measurements constitutes an inverse problem. As with any inverse 

problem, the solutions are highly dependent on the assumptions made in the forward model. When setting up a retrieval of 

cloud effective radius and cloud optical depth, the fundamental question is: What combination(s) of these variables would lead 

to the set of observations measured? Let 𝒙 be the state vector that contains the variables we seek to retrieve, thus 𝒙 = (𝑟" , 𝜏#). 

To solve for 𝒙, we define a forward model, 𝑅, which maps our state vector to a set of spectral reflectance measurements, 𝒎, 140 

such that 𝑅(𝒙) = 𝒎. The relationship between the desired state vector and spectral reflectance is non-linear.  

 

The MODIS collection 6 cloud retrieval uses the bi-spectral method, relying on an extensive library of forward model 

calculations to retrieve the effective droplet radius, 𝑟", and cloud optical depth, 𝜏# (Platnick et al., 2017). The effective radius 

is defined mathematically as the ratio of the third moment of the droplet size distribution, 𝑛(𝑟), to the second moment (Hansen 145 

and Travis, 1974): 

 

𝑟" =	
∫ %	'	%!	((%)	+%"
#
∫ '	%!	((%)	+%"
#

                                                                                                                                                                   (1) 

 

In addition to the desired state vector, each reflectance calculation depends on the solar and viewing geometry, the surface 150 

albedo, wavelength, and molecular and aerosol scattering and absorption. Note that these independent variables are not 

included in our equations. Lookup tables are created by computing reflectance over ranges of each these independent variables. 

The desired variables 𝑟" and 𝜏# are determined by computing the minimum ℓ! -norm difference between the measured 

reflectances, 𝒎, and the forward model estimates of reflectance, 𝑅(𝒙). 

 155 

2.2 Monte Carlo Derived Weighting Functions 

 

Unless droplet size is uniform throughout a cloud, the bi-spectral retrieval of effective radius depends on the two wavelengths 

chosen because average photon penetration depth within a cloud depends on the wavelength-dependent single scattering albedo  

(Platnick, 2000). Using a Monte Carlo model, we derived the weighting functions for the first seven spectral channels of 160 

MODIS to determine the average penetration depth for a vertically inhomogeneous cloud. A Monte Carlo model can simulate 

radiative transfer by treating photon-particle interactions stochastically. The critical element of this model is to define the 

processes of scattering and absorption probabilistically and then map each of these distributions onto a uniform probability 

distribution that can be sampled with a random number generator.  
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 165 

Clouds were modelled as horizontally infinite plane-parallel layers with a finite optical thickness and a vertical profile of 

effective radius. Liquid water content, 𝐿𝑊𝐶, is defined as the total mass of liquid water per unit volume of air: 

 

𝐿𝑊𝐶 = ∫ 𝜌 ,
-
𝜋	𝑟-	𝑛(𝑟)	𝑑𝑟.

/                                                                                                                                                          (2) 

 170 

where 𝜌 is the density of liquid water. Assuming a parcel of air rises adiabatically, 𝐿𝑊𝐶 increases linearly with geometric 

height. A linear relationship between liquid water content and height can be defined as: 

 

𝐿𝑊𝐶(𝑧) = 𝐿𝑊𝐶(0) + 9𝐿𝑊𝐶(𝐻) − 𝐿𝑊𝐶(0)< 0
1

                                                                                                              (3) 

 175 

where 𝐻 is the total geometric depth of the cloud such that 𝑧 = 0 at cloud base and 𝑧 = 𝐻 at cloud top. If we assume that total 

number concentration, 𝑁#(𝑧), is constant with height, and we define the droplet distribution as consisting of a single radius, 

𝑟", then we can remove the integral in Eq. (2) and use Eq. (3) to solve for the effective radius under the adiabatic assumption: 

 

𝑟"(𝑧) = 	>
-

,'2$	3
	(𝐿𝑊𝐶(0) + (𝐿𝑊𝐶(𝐻) − 𝐿𝑊𝐶(0)) 0

1
))?

%
& = (𝑟456- +	(𝑟657- − 𝑟456- 	) 0

1
)
%
&                                                         (4) 180 

 

where 𝑟657 and 𝑟456 are the effective radii at cloud top and cloud base, respectively (Platnick, 2000). This droplet profile was 

used for the Monte Carlo simulations. Clouds were comprised of 100 plane-parallel layers with droplet size following a narrow 

gamma distribution in each layer (Deirmendjian, 1964). Figure 1 shows normalized weighting functions for a vertically 

inhomogeneous cloud. Each weighting function represents the conditional probability of a photon scattered in the upward 185 

direction at cloud top, given that it penetrated to a max depth of 𝜏. 

 

The wavelength-dependent column-weighted effective radius is:  

 

𝑟"∗ = ∫ 𝑟"(𝜏)	𝑤9(𝜏)	𝑑𝜏
:$
/                                                                                                                                                          (5) 190 

 

where 𝑤9(𝜏) is the wavelength-dependent weighting function (Platnick, 2000). For a non-constant droplet profile, Eq. (5) 

represents the retrieved effective radius for a given wavelength. From Fig. 1, it is evident that reflectance at different near-

infrared wavelengths depend on the droplet profile. Since single scattering albedo, 𝜛/, and to a lesser extent the asymmetry 

parameter, varies with wavelength, measurements at different wavelengths probe different depths within a cloud.  In general, 195 

droplet absorption, defined by 1 −𝜛/, controls the vertically dependent weighting functions since photons that are more likely 
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to be absorbed are less likely to penetrate deep into cloud layers. Figure 1 shows that on average, reflectance is dominated by 

scattering from the cloud top due to a greater proportion of photons reaching a maximum penetration depth in the upper region 

of the cloud. 

 200 

 
Figure 1: Weighting functions of the MODIS instrument's first seven spectral channels. Model parameters are shown in the lower 
right corner. 𝝁𝟎 is the cosine of the solar zenith angle, 𝑨𝟎 is the surface albedo below the cloud layer, 𝑵𝒑𝒉𝒐𝒕𝒐𝒏𝒔 represents the number 
of photons used to compute each weighting function, 𝑵𝑳𝒂𝒚𝒆𝒓𝒔 represents the number of homogeneous, plane-parallel layers, and 𝝉𝟎 
is the total optical depth of the cloud. Horizontal dashed lines represent the optical depth associated with the retrieved effective 205 
radius using the wavelength specified (Eq. (5)). 

The development of a Monte Carlo simulation to model radiative transfer within clouds provided insight into how wavelength-

dependent reflectance samples different layers of clouds. If 𝑟"  were constant with height the structure of each weighting 

function and the depth of average penetration would be irrelevant. Figure 1 shows that weighting functions at all seven MODIS 

wavelengths used in this analysis reach a similar maximum optical depth of about one. Furthermore, these weighting functions 210 

are broad and have considerable overlap, signifying considerable correlation between reflectances at different wavelengths. 

Ideally, a set of orthogonal weighting functions that probe different depths of the cloud would be preferred. While this is not 

achieved with wavelengths in the visible and near-infrared region, measurements at many wavelengths can still be used to 

increase the retrieval signal-to-noise ratio. 

 215 

2.3 The Constrained Optimal Estimation Method 
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Kokhanovsky and Rozanov (2012) applied an optimal estimation technique to retrieve a state vector that included droplet size 

at cloud top and base:  𝒙 = (𝑟657, 𝑟456 , 𝜏#). Importantly, this technique requires an assumption about the dependence of droplet 

size with altitude within cloud. Once droplet size is retrieved at the top and base, 𝑟"(𝜏) can be determined continuously across 220 

the domain 𝜏 = [0, 𝜏#]. We assumed the droplet profile was adiabatic according to Eq. (4). 

 

The Gauss-Newton iterative method, a technique used to solve non-linear least-squares problems, is used to solve for the state 

vector (Rodgers, 2000). At each iteration, the new state vector estimate is: 

 225 

𝒙;<= = 	𝒙; + (𝐒>?= +	𝐊;@		𝐒A?=		𝐊;)?=		[𝐊;@		𝐒A?=	(𝒎	 − 𝑅(𝒙;)) + 𝐒>(𝒙; − 𝒙>)]                                                                        (6) 

 

where matrices are indicated in capitalized boldface, and vectors are indicated in lowercase, italicized boldface. 𝒙; is the state 

vector estimate of the 𝑖6B iteration, 𝒙> is the a priori state vector, 𝐒> is the a priori covariance matrix, 𝐊; is the Jacobian matrix 

of 𝑅(𝒙;), and 𝐒A is the measurement covariance matrix. The a priori state vector represents the best guess of the values of each 230 

retrieved variable before the Gauss-Newton iterative solution is derived. The a priori covariance matrix accounts for the 

uncertainty in the a priori guess and the relationship between each state variable. Likewise, the measurement covariance matrix 

defines the measurement uncertainty at each wavelength and the correlation between measurements at different wavelengths. 

Two measurements with a non-zero covariance are at least partially redundant with respect to retrieving the desired variables. 

The Jacobian is defined as: 235 

 

𝐊𝒊 = ∇𝑅(𝒙;) =

⎣
⎢
⎢
⎡
DE(𝒙',H%)
D%()*

DE(𝒙',H%)
D%+)(

DE(𝒙',H%)
D:$

DE(𝒙',H!)
D%()*

DE(𝒙',H!)
D%+)(

DE(𝒙',H!)
D:$

… ⋯ ⋯ ⎦
⎥
⎥
⎤
                                                                                                                          (7) 

 

The forward model, 𝑅, is used to compute reflectance at a set of wavelengths for some cloud state,  𝒙;. The Jacobian represents 

the change in reflectance due to a perturbation in each state variable. Equation 6 balances several competing factors during 240 

each iteration: the difference between the measured and computed reflectances (𝒎−	𝑅(𝒙;)), the difference between the 

current state estimate and the a priori ( 𝒙; − 	𝒙>), and the rate of change of the estimated measurements with respect to the 

current state variable (𝐊; =	∇𝑅(𝒙;)). 

 

To construct Eq. (7), we compute the change in reflectance due to a small change in one of the state variables. For example: 245 
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DE(𝒙',H%)

D%'
()* ≈	

∆EJ(%'
()*<∆%()*,%'

+)(,K,-),H%L

∆%()*
                                                                                                                                           (8) 

 

is the change in reflectance due to a change in the radius at cloud top. We defined the change in the state variables as a fraction 

of the current iteration state vector. However, the magnitude of the change in reflectance depends on the initial values of the 250 

state variables. In addition, we need the change in reflectance to be greater than the measurement uncertainty. To ensure these 

conditions for all cases analyzed, the Jacobian was computed using the following fractions to estimate the partial derivatives: 

∆𝒙; =	 S0.1𝑟;
657, 0.35𝑟;456 , 0.1τM;X. These values, determined through trial and error, ensured that the reflectance change 

exceeded the measurement uncertainty when the state vector was outside of a local minimum.  

 255 

During our analysis, we determined a need to constrain the solution space of the retrieved variables when using the Gauss-

Newton iterative technique. We adopted the bound-constraint method by Doicu et al. (2003) to ensure the following constraints 

were satisfied: 

 

𝑟456 < 𝑟657	260 

1 < 𝑟456 < 25                                                                                                                                                                        (9)	

1 < 𝑟657 < 25 

 

If the first constraint is not satisfied, the forward model assumption is invalidated. The second and third constraints are required 

due to the range of pre-computed Mie calculations used by libRadtran (Emde et al., 2016). For each iteration, we defined a 265 

new direction as: 

 

𝒑; = 	(𝐒>?= +	𝐊;@		𝐒A?=		𝐊;)?=		[𝐊;@		𝐒A?=	(𝒎	 − 𝑅(𝒙;)) + 𝐒>(𝒙; − 𝒙>)]                                                                                (10) 

 

such that the updated state vector guess was: 𝒙;<= =	𝒙; +	𝒑; (Doicu et al., 2003). We then solved for the maximum scaler 270 

value, 𝑎, that resulted in a new state vector,	𝒙;<= =	𝒙; + 	𝑎𝒑; , that met our state variable constraints and resulted in a lower 

ℓ!-norm between the estimate and true measurements: 

 

]∑(𝑅(𝒙; + 	𝑎𝒑;) −𝒎	)! < ]∑(𝑅(𝒙;) −𝒎	)!                                                                                                                       (11) 

 275 

from hereon we will use the term residual to refer to the left side of Eq. (11), the ℓ!-norm of the difference between the forward 

model reflectances and the true measurements. This was repeated until one of two convergence metrics was met. If the percent 

difference of the residual between two successive iterations was less than 3%, the process was terminated. This value was 
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adopted from an extensive number of retrievals. Values lower than 3% were the result of a local minima and further iterations 

never led to significant changes in the retrieved state vector. The other convergence criteria terminated the iterative process if 280 

the residual was less than or equal to the ℓ!-norm of the measurement uncertainty and the previous iteration (Doicu et al., 

2003): 

 

]∑(𝑅(𝒙;<=) −𝒎		)! ≤ ]∑(𝛿𝒎)! <	]∑(𝑅(𝒙;) −𝒎		)!                                                                                              (12) 

 285 

 Once convergence occurred, the posterior covariance matrix was computed. The uncertainties of the retrieved variables are 

the square root of the main diagonal (Rodgers, 2000). 

 

3 Data Used and Forward Model Assumptions 

 290 

In this analysis, libRadtran (Emde et al., 2016) was used to run 1D DISORT (Stamnes et al., 2000) to compute forward modeled 

spectral reflectance. All clouds were defined as they were in the Monte Carlo simulations (Sect. 2.2) with an adiabatic droplet 

profile, 100 plane-parallel layers and a gamma droplet distribution. For all simulations shown, the distribution width parameter, 

𝛼 , was set to 10 based on analysis of in situ measurements of non-precipitating marine stratocumulus clouds from the 

VOCALS-REx flight campaign. We used the MODIS retrieval of cloud top height to define the upper boundary of the cloud. 295 

Cloud geometric thickness was set to 0.5 𝑘𝑚, following a similar approach as the MODIS Cloud Products retrieval algorithm 

and our own analysis showing negligible impacts of cloud geometric thickness on reflectance for the wavelengths used. It is 

worth noting that, while an accurate forward model is desired, the primary function of the forward model and algorithm 

developed for this research was a proof-of-concept for retrieving vertical droplet profiles. Future iterations of this algorithm 

will continue to improve the accuracy of our forward model. 300 

 

During VOCALS-REx, aircraft measurements of cloud droplet profiles were acquired from 14 flights conducted from 15 

October to 15 November 2008. Some of the flight paths were spatially and temporally coincident with overpasses of the Terra 

and Aqua satellites (Wood et al., 2011). Over the entire duration of VOCALS-Rex, three vertical profiles were sampled within 

5 minutes of a MODIS overpass, providing the best opportunities for comparison with remote retrievals.  The Cloud Droplet 305 

Probe (CDP) manufactured by Droplet Measurement Technologies (Lance et al., 2010) measured forward scattering from a 

laser source to determine droplet diameters between 2 and 52 𝜇𝑚. The two-dimensional cloud optical array probe (2DC) by 

Particle Measurement Systems (Strapp et al., 2001) similarly measured droplet diameters between 25 and 1560 𝜇𝑚. To avoid 

redundancy, we ignored the 2DC data for droplet diameters less than 52 𝜇𝑚. These two data sets are distinct in that one consists 

primarily of typical cloud droplet sizes (∼10 𝜇𝑚), whereas the other contains drizzle and precipitation-sized droplets (>100 310 

μm). These two measurement systems enabled us to segregate clouds between those with and without drizzle by using a liquid 
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water path threshold of 1 𝑔	𝑚?!  as measured by the 2DC instrument, a slightly lower threshold than was used by Painemal 

and Zuidema (2011). This effectively removed any sampled clouds with droplets larger than 52 𝜇𝑚 from our data set. Painemal 

and Zuidema (2011) found a positive bias for the CDP 𝐿𝑊𝐶 measurements compared to those from a hot wire probe. We 

applied their prescribed correction using a simple linear regression to the CDP droplet size distribution. In defining cloud top 315 

and bottom within the in situ data, we followed Painemal and Zuidema (2011), who defined the minimum liquid water content 

threshold of 0.03 𝑔	𝑚?-and a minimum total droplet number concentration threshold of 1 𝑐𝑚?-. Therefore, the cloud top and 

bottom were identified as the minimum and maximum altitudes where both criteria were satisfied. 

 
Table 1: First seven spectral channels of the MODIS instrument (King et al., 1992) 320 

Band Bandwidth (𝑛𝑚) 

1 620 - 670 

2 841 - 876 

3 459 - 479 

4 545 - 565 

5 1230 - 1250 

6 1628 - 1652 

7 2105 - 2155 
 

Figure 2 shows the median vertical profiles of effective radius, liquid water content, and number concentration for over 100 in 

situ samples without drizzle or precipitation-sized droplets during VOCALS-REx. The effective radius and liquid water content 

followed log-normal distributions, whereas the droplet number concentrations were Gaussian distributed. The median profiles 

of effective radius and liquid water content closely resemble the theoretical adiabatic profiles overlaid in black. Figure 2 325 

demonstrates that the median profile of droplet effective radius was found to increase with altitude within cloud. We found the 

median effective radius at cloud top was about 37% larger than the value at cloud base for non-precipitating marine 

stratocumulus. These results justify the adiabatic assumption that results in a linear increase in liquid water content with altitude 

within cloud. We also note that the median profile of droplet number concentration is roughly constant with altitude, another 

assumption in the forward model. We applied our constrained optimal estimation algorithm outlined in Sect. 2.3 to real data 330 

using multispectral measurements of reflectance from the first seven spectral channels of MODIS (Table 1). These seven 

spectral channels were used because they deliberately avoid water vapor absorption, simplifying the forward model. 

 

The Gauss-Newton method assumes a Gaussian prior with symmetric uncertainty about the a priori value. A priori uncertainty 

for the cloud top radius and optical depth was set to their respective MODIS collection 6 bi-spectral retrieval uncertainties. 335 

For the a priori uncertainty of the radius at cloud bottom, we scaled the bi-spectral retrieval uncertainty of effective radius 

using the weighting function for 2.13 𝜇𝑚. For the example cloud in Fig. 1, which has a similar droplet profile as the median 
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effective radius profile found during the VOCALS-Rex campaign (Fig. 2), over 50% of the measured signal comes from the 

upper quartile of the cloud. Only 8% of the total signal comes from the lowest quartile. Thus, we adopted a cloud bottom 

uncertainty of a factor 6 larger than retrieved effective radius uncertainty. The measurement covariance matrix, 𝐒A, was defined 340 

using the measurement uncertainty for the seven spectral channels of MODIS used in this analysis. The different spectral 

measurements and the retrieved variables were assumed to be independent from one another. While the use of diagonal 

covariance matrices is common (King and Vaughan, 2012; Kokhanovsky and Rozanov, 2012), it does not reflect the true 

nature of the problem (see Sect. 5). 

 345 

 
Figure 2: Median vertical profiles of effective radius, liquid water content, and droplet number concentration for non-precipitating 
clouds measured during the VOCALS-Rex flight campaign. The green line shows the median value of the distribution as a function 
of normalized cloud depth. The green-shaded area represents the average deviation above and below the median line. The black 
lines in the left and middle panels show the theoretical adiabatic profile using the boundary values found by the median profile. The 350 
vertical line in the right panel highlights the near-constant number concentration. 

Section 4 shows retrievals for the three vertical profiles sampled within 5 minutes of a MODIS overpass. To account for the 

temporal displacement of cloud location, we applied a simple advection model using horizontal wind speed and direction 

measured on the aircraft. Using the median wind speed and direction from within the cloud, we computed the distance the 

cloud would have travelled during the time between MODIS and VOCALS-REx. The location was either projected forward 355 

or backward depending on whether the in situ sampling occurred before or after the MODIS overpass. The horizontal distance 

travelled by plane during in situ sampling exceeded the MODIS pixel sampling distance for all cases show in this paper. None 
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of the droplet profiles shown in Sect. 4 were contained within a single pixel. After applying our advection model, the MODIS 

pixel closest to the newly projected location was used for the retrieval. 

 360 

It is important to quantify the uncertainty of the in situ measurements since they were used to validate our retrieval algorithm. 

However, the CDP droplet size uncertainty estimate is attributed to several factors that make it difficult to quantify (Lance et 

al., 2010). Droplets that pass through the edges of the sampling area tend to have much higher uncertainty than droplets that 

pass through the center. Uncertainty due to coincidence, where multiple droplets pass through the sampling area within the 

sampling time of the detecting optics, is challenging to estimate because it depends on droplet size, particle concentration, and 365 

transit location within the sampling area. There are also limitations to the size resolution of the instrument due to the non-

monotonic relationship between droplet size and the scattered laser light signal (Lance et al., 2010). Lance et al. (2010) used 

a water droplet generating system to determine the sizing accuracy of the CDP instrument. Using their results, we simplified 

the CDP measurement uncertainty for this analysis by defining an uncertainty of 20% for effective radii below 5 𝜇𝑚, and an 

uncertainty of 10% for those above 5 𝜇𝑚. 370 

 

4 Results 

 

Figures 3a, 3b, and 3c, show results applying the algorithm described in Sect. 2.3 for the retrievals of 𝑟"(𝜏) for clouds with 

optical depths of 6.5, 11, and 19.5, respectively. Each figure also shows the MODIS Collection 6 bi-spectral retrieval of 𝑟" and 375 

𝜏# using measurements of 0.55 𝜇𝑚 and 2.1 𝜇𝑚. The bi-spectral retrieval of effective radius is within range of the cloud top in 

situ measurement for each case, validating its use as the a priori value for the radius at cloud top. The estimated liquid water 

path from the retrieved profile was closer to the in situ measured value than that derived from the bi-spectral retrieval for two 

of the three cases. The absolute difference between the multispectral estimate of liquid water path and that derived from the 

bi-spectral method for Fig. 3a, 3b, and 3c are 1.5, 0.7, and 12.5 𝑔	𝑚?!, respectively. There are several factors contributing to 380 

these results. While the retrieval of the radius at cloud top was close to the in situ measurements in all cases, the retrieval of 

the radius at cloud bottom was consistently larger than the in situ measurement. Second, we showed in Fig. 2 that the median 

vertical profile of droplet size of over 100 in situ measurements was close to adiabatic. This provided the basis for assuming 

an adiabatic droplet profile in the forward model, but this does not mean all in situ measured profiles were adiabatic, as 

evidenced by the large spread in the observations. 385 
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Figure 3: Comparison between effective radius calculated from in situ measurements (black circles), the MODIS bi-spectral retrieval 
of effective radius and optical depth (dotted vertical and horizonal blue lines, respectively), and the retrieved vertical profile using 
the constrained optimal estimation method (pink dashed line). The liquid water path estimate using in situ data, the MODIS 395 
retrievals, and our retrieved vertical profile are stated in the bolded box.  Retrieval uncertainty for the effective radius at cloud top 
and bottom are shown as pink horizontal bars. In situ uncertainties are shown as black horizontal bars. MODIS and in situ data 
recorded on (a) 11 Nov., 2008, (b) and (c) 9 Nov., 2008 

The retrieved droplet profiles in Fig 3a and 3b follow a similar pattern to their respective in situ measurements, but both are 

larger than the in situ at nearly all levels within the cloud. This clearly affects the liquid water path comparisons. In particular, 400 

the retrieved effective radius at cloud base in Fig. 3b did not match the in situ measurements as well as the other two cases. As 

such, the estimated liquid water path using the retrieved profile was nearly identical to the value estimated by the bi-spectral 

retrieval. It proved difficult to determine exactly why this case fared worse than the other two, and it appears at odds with King 

and Vaughan (2012) who found uncertainty of the effective radius at cloud base to be at a minimum for a cloud optical depth 

of about 10 when using synthetic data. 405 

 

We investigated the uniqueness of the retrieved solutions and found that the constraints applied to the Gauss-Newton technique 

outlined in Sect. 2.3 were required to retrieve droplet profiles that consistently resembled in situ measurements. The Gauss-

Newton solver is not designed to find the global minimum. Instead, it converges towards a local minimum, which depends on 

the initial state vector estimate and the a priori (Rodgers, 2000). Indeed, there are many state vectors that will result in a set of 410 

spectral measurements within the MODIS measurement uncertainty because of the low relative weights near cloud base for 
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the seven spectral channels used in this analysis. In our analysis we found that without constraints on the solution space, even 

an a priori close to the in situ values for the radius at cloud top and bottom could still lead to a solution with 𝑟657 < 𝑟456, which 

invalidated the forward model assumptions. 

 415 

To provide insight into the sensitivity of the multispectral retrieval of 𝑟456  with cloud optical depth we analyzed the 

components of the Jacobian. Figure 4 shows the change in estimated spectral reflectance, 𝑅(𝒙;), due to a change in the cloud 

bottom radius for three clouds with differing values of optical depth. The behavior observed in Fig. 4 matches our expectations 

defined by the bi-spectral method. The change in estimated reflectance due to a change in 𝑟456 is small in the visible where the 

droplet single scattering albedo is close to 1. In the near-infrared, water droplet absorption is proportional to the droplet radius. 420 

Thus, we expected a greater change in reflectance in the near-infrared spectral channels as the cloud bottom radius increases 

due to decreasing single scattering albedo. However, as optical depth increased, fewer photons penetrated the cloud's full 

depth, and eventually there was no change in reflectance. 

 

The black circles in Fig. 4 shows the measurement uncertainty for the MODIS channels. For moderately thin clouds with an 425 

optical depth of less than 10, the change in reflectance typically exceeds the measurement uncertainty at wavelengths 1.64 𝜇𝑚 

and 2.13 𝜇𝑚. Changes in estimated reflectance when optical depth was 20 were equivalent or less than the measurement 

uncertainty. This represents an upper threshold in optical depth over which this retrieval is valid. Figure 4 also emphasizes 

expected improvements in this method from utilizing CPF measurements with radiometric uncertainty of 0.3% (Shea et al., 

2020). 430 

 
Figure 4: The change in our estimate of spectral reflectance due to a change in 𝒓𝒃𝒐𝒕. The black circles show the MODIS measurement 
uncertainty in reflectance for each spectral channel. Three different cloud optical depths were compared to determine optical depth 
limits. The black squares show the measurement uncertainty for CPF is below the change in reflectance for each spectral channel. 
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 435 

4.1 Comparing in situ measurements with remote retrievals 

 

It is important to acknowledge the difficulty in comparing remote retrievals of droplet size with their in situ measured 

counterparts. We used the in situ measurements as a guide while developing our algorithm, but it would be incorrect to treat 

them as absolute truth. At nadir, the area sampled on the ground by a single MODIS pixel is 1 𝑘𝑚!. With a near-circular orbit, 440 

the Terra and Aqua satellites have a roughly constant height above Earth's surface of about 709 𝑘𝑚. We estimate the sampling 

volume of a plane parallel cloud with a 0.5 𝑘𝑚 thickness viewed by a single nadir-looking pixel to be about 0.167 𝑘𝑚-. The 

sampling volume of the CDP laser probe is the product of the distance traveled by the plane over the sampling time with the 

sampling area of the instrument, which is about 0.3 𝑚𝑚! (Lance et al., 2010). The C130 aircraft that carried the CDP flew at 

an average speed of 107 𝑚	𝑠?=. With a 1 𝐻𝑧 sampling rate, the sampling volume of the CDP instrument was about 32 𝑐𝑚-, 445 

or 3.2 ⋅ 10?=,		𝑘𝑚-. Therefore, the volumes sampled by the aircraft instruments and the MODIS spectrometer differ by 13 

orders of magnitude. The enormous difference requires a discussion about the spatial variability of droplet size within marine 

stratocumulus clouds. 

 
Figure 5: Three horizontal profiles of effective radius from three different non-precipitating marine stratus clouds. These 450 
measurements were made at a near-constant altitude during the VOCALS-Rex field campaign on 9 Nov. 2008. The standard 
deviations of effective radius over each profile are shown in the legend. 

Throughout the VOCALS-Rex flight campaign, numerous horizontal flight paths were conducted at a near-constant altitude. 

We used these profiles to investigate the horizontal variability of effective radius in non-precipitating clouds. Figure 5 shows 

three representative horizontal profiles of effective droplet radius with a maximum vertical displacement during sampling of 455 

10 𝑚. The three shown in Fig. 5 are representative of the two common regimes of behavior: steadily increasing or decreasing, 
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and a quasi-stable mean. The range of these three horizontal profiles conveys how much change in droplet size is possible. 

These ranges were calculated to be 1.1 𝜇𝑚 (red), 5.5 𝜇𝑚 (blue), and 6 (yellow) 𝜇𝑚. 

 

Using 50 horizontal in situ profiles from VOCALS-REx, we computed the standard deviation of effective radius over two 460 

spatial scales representing the smallest and largest cross-track MODIS pixel sampling distances on the ground. At nadir, the 

cross-track sampling distance is 1 𝑘𝑚, and at a scan angle of 55°, it is about 5 𝑘𝑚 long (Nishihama et al., 1997). We computed 

the standard deviation of droplet size over each length-scale by sliding windows equal to both length scales over all 50 

horizontal profiles assuming the variability was invariant with direction within the horizontal plane. Figure 6 shows the 

histogram of standard deviations for the two length scales. The median variability for the 1 𝑘𝑚 length scale was 0.47 𝜇𝑚, 465 

whereas the median variability for the 5 𝑘𝑚 length scale was 0.56 𝜇𝑚. Thus, as scan angle increases, the pixel ground sampling 

area captures larger variations in droplet size. 

 
Figure 6: Histograms of the standard deviation of effective radius using horizontal profiles of non-precipitating clouds from the 
VOCALS-REx flight campaign. The standard deviations were calculated over the two along-scan pixel length extremes. 470 

For comparing remote sensing with in situ measurements, it is important to recognize that the in situ profile represents a very 

small portion of the MODIS sampling volume. The retrieval of droplet size from MODIS measured radiance over a single 

pixel represents an integral over the sampled volume, which accounts for the contribution to reflectance at a given time, depth, 

and horizontal location (Feingold et al., 2006). In addition to the retrieval and in situ measurement uncertainties, the horizontal 

variability of droplet size is another ambiguity to consider when comparing remote retrievals with in-situ measurements. 475 
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It should be noted that our classification of horizontal and vertical profiles is non-ideal but a necessary byproduct of airborne 

sampling. Every vertical profile sampled by VOCALS-REx spanned far more horizontal distance than vertical. Our intention 

with Fig. 2 was to show a representation of the distribution of droplet sizes sampled along the vertical dimension of a cloud; 

however, droplet horizontal variability is inevitably part of airborne vertical sampling.  480 

 

Temporal variability also contributes to a discrepancy between in situ measurements and retrievals. The three vertical profiles 

shown in this paper are those closest in time between a MODIS and in situ measurement for the entire VOCALS-Rex field 

campaign. The time differences are 3.4 (Fig. 3a), 1.5 (Fig. 3b), and 4 minutes (Fig. 3c). We attempted to account for advection 

within our retrieval algorithm, but this does not account for the variability of cloud droplet size over time. 485 

 

4.2 Simulated EMIT Spectra 

 

We retrieved droplet profiles using the lookup table method introduced in Sect. 2.1 with simulated EMIT spectra to investigate 

two aspects that impact the solution space: the number of wavelengths used in the retrieval and the measurement uncertainty. 490 

Simulated reflectance spectra were generated in a similar manner to the synthetic data generated by King and Vaughan (2012). 

libRadtran was used to compute top-of-atmosphere reflected radiance spectra for plane-parallel clouds over ocean with an 

adiabatic droplet profile using 1D DISORT  (Emde et al., 2016; Stamnes et al., 2000). Reflectance at each EMIT spectral 

channel was estimated by convolving the radiance spectrum with the EMIT spectral response functions and normalizing with 

the incident solar flux. Since we were unable to verify EMIT systematic and random uncertainty, we generated simulated 495 

spectra with varying uncertainty by sampling from a Gaussian distribution with zero mean. The lookup table method took 

about 50 times longer to compute than the iterative Gauss-Newton method, but once completed, we created a map from state 

space to measurement space. We repeated this process for different sets of spectral channels and for different values of 

measurement uncertainty in order to study how these two aspects affect the retrieval of droplet size at cloud base.  

 500 

To quantify how the number of spectral channels used in the retrieval affects the solution, we solved for the state vector with 

two different sets of wavelengths. We modeled a cloudy scene off the coast of Chile using solar-viewing geometry from an 

EMIT measurement recorded on 17 January 2024, the same region where the VOCALS-REx field campaign took place in 

2008 (Wood et al., 2011). The simulated reflectances were computed with 2% measurement uncertainty, the same value as the 

MODIS L1B reflectance uncertainty. Forward modeled reflectance was computed for different combinations of the three state 505 

variables, 𝒙 = (𝑟657, 𝑟456 , 𝜏#). Figure 7 shows the contours of the relative residual, the fraction of the residual with respect to 

the ℓ!-norm of the measurement uncertainty: ]∑(𝑅(𝒙;) −𝒎	)! /]∑(𝛿𝒎)!. The left side of Fig. 7 was generated using seven 

spectral channels aligned with the seven MODIS spectral channels used in the multispectral retrieval (Table 1). The right side 

of Fig. 7 was generated using 35 spectral channels across the visible and near-infrared that avoided water vapor and other 
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gaseous absorption. According to the convergence criteria outlined in Sect. 2.3, the iterative algorithm terminates when the 510 

residual is less than or equal to the ℓ!-norm of the measurement uncertainty (Eq. (12)). This region of residual minima is 

located within the isopleth of one. State vectors within this isopleth lead to forward model reflectances within the uncertainty 

of the measurements. The solution space occupies three dimensions corresponding to the three retrieved variables. Figure 7 

collapses the solution space into two dimensions by taking the difference between the cloud bottom radius dimension and the 

radius at cloud top associated with the global minimum relative residual. When we increased the number of spectral bands 515 

from seven to 35, the region of residual minima decreased along the cloud bottom radius dimension by about 2 𝜇𝑚 . 

Furthermore, Fig. 7 demonstrates that when using 35 spectral channels with 2% measurement uncertainty, state vectors within 

the isopleth of one do not include any droplet profiles with a larger radius at cloud bottom than cloud top, represented by 

negative values on the y-axis.  

  520 

 
Figure 7: Contours of the relative 𝓵𝟐-norm difference between the libRadtran-estimated reflectance and simulated EMIT spectra. 
The left panel was generated using 7 spectral channels that align with those used in the multispectral retrieval in Sect. 4.1 and the 
right panel with 35 spectral channels throughout the visible and near-infrared. The y-axis is the difference between the cloud top 
radius value associated with the global minimum relative 𝓵𝟐-norm and the cloud bottom radius. The x-axis varies with cloud optical 525 
depth.  

Figure 8 demonstrates how measurement uncertainty affects the solution space. We computed forward modeled reflectances 

for the same scene described above for Fig. 7, but we kept the number of wavelengths used in the retrieval constant, using the 

same 35 spectral channels as the right side of Fig. 7. The left side of Fig. 8 shows the relative residual using synthetic spectra 

with 2% measurement uncertainty, whereas the right applied a 0.3% measurement uncertainty, similar to the value reported 530 
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for the upcoming CPF instrument (Shea et al., 2020). Unlike the modest reduction of the residual minima region with increasing 

wavelengths, Fig. 8 shows a significant reduction with decreasing measurement uncertainty. The region within the isopleth of 

one decreased along the cloud bottom radius dimension by about 5 𝜇𝑚. It’s important to note that the shape of the contours in 

Figs. 7 and 8 depends on the droplet profile of the cloud and varies with each simulated EMIT spectra because of the addition 

of Gaussian noise. Both figures show the most common results from many simulations.  535 

 
Figure 8: Contours of the relative 𝓵𝟐-norm difference between the libRadtran-estimated reflectance and simulated EMIT spectra. 
The left and right panels used simulated EMIT reflectances with 2% and 0.3% measurement uncertainty, respectively. The y-axis 
is the difference between the cloud top radius value associated with the global minimum relative 𝓵𝟐-norm, and the cloud bottom 
radius. The x-axis varies with cloud optical depth. Both panels used 35 spectral channels throughout the visible and near-infrared. 540 

 

5 Discussion and Conclusions 

 

To prepare for upcoming high-accuracy, full-spectral space-borne hyperspectral measurements, we have developed new 

methods to retrieve vertical profiles of cloud droplet size. We extended the results of King and Vaughan (2012) by creating a 545 

constrained form of the iterative Gauss-Newton technique and applied it to real data. Using the first seven spectral channels of 

MODIS and coincident in situ measurements from the VOCALS-REx flight campaign, we showed that retrieving a profile of 

effective radius is possible, but solving for the effective radius at cloud base is problematic because of the similarity of 

weighting functions at various visible and near-infrared wavelengths. Other studies have retrieved vertical profiles of effective 

radius from MODIS data without addressing solution uniqueness (Chang and Li, 2003; Kokhanovsky and Rozanov, 2012). 550 
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Chang and Li (2003) outlined methods to retrieve droplet profiles, applied these methods to real data, and investigated changes 

in retrieved variables due to reflectance uncertainty. Kokhanovsky and Rozanov (2012) used the Gauss-Newton optimal 

estimation method to retrieve droplet profiles, demonstrating that their method worked on real data. King and Vaughan (2012) 

investigated the impact of measurement uncertainty on retrieval uncertainty using synthetic data but did not address solution 

uniqueness. The limited unique information in the MODIS bands used in our analysis led to a non-unique solution, with many 555 

droplet profiles leading to a set of spectral measurements within the MODIS measurement uncertainty. We implemented a 

constrained form of the algorithm, which reduced the solution space to a set consistent with the forward model assumptions, 

leading to state vectors that more closely matched the in situ measurements. 

 

Coincident in situ measurements were used to validate the retrieval. Algorithmic parameters described in Sect. 2.3 were tuned 560 

such that the retrieved droplet profile closely matched the in situ measurements. However, in situ measurements cannot be 

treated as absolute truth because the sampling volumes of VOCALS-REx and the MODIS measurements differ by 13 orders 

of magnitude. Using VOCALS-REx in situ data, we found the median horizontal variability of effective radius to be between 

0.47 𝜇𝑚 and 0.56 𝜇𝑚 for the two extremes of the MODIS along-scan pixel ground sampling distances of 1 and 5 𝑘𝑚. These 

values were small but nonetheless, affect the comparison between in situ measurements and remote retrievals. The retrieved 565 

droplet size is representative of a radiatively-weighted mean over the sampling volume. The in situ measurement is considered 

a point measurement, which is more susceptible to spatial perturbations. Horizontal variability of effective radius over the 

MODIS pixel sampling area should be taken into account, along with the in situ measurement and retrieval uncertainty, when 

making these comparisons. 

 570 

All three in situ vertical profiles analyzed in this paper spanned multiple MODIS pixels. Unfortunately, there was never a 

scenario where a vertical profile was completely contained within a single pixel. We found that the overlapping pixel with an 

optical depth closest to the in situ measurement performed best in the retrieval. This result demonstrates the important 

interdependence between the retrieved variables: we required an accurate a priori of optical depth to retrieve droplet sizes that 

more closely matched the in situ measurements. Indeed, Figs. 7 and 8 demonstrate the importance of an accurate a priori and 575 

initial guess because these values help define the approach to the convergence region. Future work will explore non-diagonal 

covariance matrices and the interdependence between the retrieved variables. 

 

The first seven spectral channels of MODIS were used in this analysis because they avoid water vapor absorption. When we 

increased the number of wavelengths from seven to 35 using simulated EMIT spectra, we found that the region of residual 580 

minima within the solution space decreased along the cloud bottom radius dimension by about 2 𝜇𝑚. Future applications with 

hyperspectral measurements from EMIT and CPF will consider hundreds of spectral bands, including those in the wings of 

near-infrared water vapor absorption features. Perhaps this additional information will enhance the modest improvements to 

the retrieval of droplet size at cloud base shown in Fig. 7 by increasing the retrieval signal-to-noise ratio. 
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 585 

The optical depth over which the droplet size at cloud base can be retrieved is limited by the uncertainty of the measurements. 

Changes in the spectral reflectance due to a change in droplet size at cloud base were often below the MODIS measurement 

uncertainty for optically thick clouds. Figure 4 illustrates that CPF measurement uncertainty, which is lower than the estimated 

change in reflectance at every spectral channel used in this analysis, will improve the retrieval of droplet size at cloud base. 

Furthermore, Fig. 8 shows a 5 𝜇𝑚 reduction in the region of residual minima along the cloud bottom radius dimension when 590 

measurement uncertainty drops from 2% to 0.3%. These results underscore the importance of higher accuracy from the next 

generation of space-borne spectrometers. The results of this study suggest that a reduction in radiometric uncertainty is a more 

significant factor for retrieving droplet profiles than increasing the number of spectral bands.  

 

 595 

 

Code and Data Availability.   The retrieval algorithm developed for this paper is freely available on GitHub 

(https://github.com/andrewjbuggee/multispectral-retrieval-using-MODIS). The MODIS L1B reflectance data sets used for 

retrieving droplet profiles are described within the previously mentioned GitHub repository and freely available at NASA’s 

Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center (LAADS-DAAC): 600 

https://ladsweb.modaps.eosdis.nasa.gov/. The VOCALS-REx data used for comparison with the multispectral retrievals are 

similarly defined within the GitHub repository. These data are maintained by the National Center for Atmospheric Research 

Earth Observing Laboratory Field Data Archive (NCAR EOL) and are freely available at: https://doi.org/10.5065/D60863M8.  
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